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considers. As a consequence, the critical exponents of the correlators of these Polyakov

lines are determined. Monte Carlo simulations with sources in the symmetric two-index
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1. Introduction

To probe the structure of the vacuum of SU(N) gauge theory we dispose of an infinite va-

riety of external sources transforming as arbitrary irreducible representations of the gauge

group. One might wonder whether the information extracted in this way is largely redun-

dant, since the force acting on a colour source in a representation R built up of j copies of

the fundamental representation should depend only on its N−ality kR ≡ j (modN), the

reason being that all representations with same k (hence transforming in the same manner

under the center ZN ) can be converted into each other by the emission of a proper number

of soft gluons.

Actually such a property should be regarded as a feature of the IR limit, valid only

when the source in question is very far from the other sources. In such a case this is

subjected to a confining force only if the N−ality is non-vanishing. At intermediate scales

lattice studies have shown long ago that this is not the case. Even sources in the adjoint

representation (and therefore blind to the center) feel a linear rising potential, with a string

tension larger than that of the fundamental representation [1]. Since then most numerical

experiments based on large Wilson loops [2 – 6] yield string tensions which depend on the

specific representation R of the probe source rather than on its N−ality. In the IR limit

the heavier R−strings are expected to decay into the string with smallest string tension

within the same N -ality class, called k−string. A theoretical description of such a decay

as a level-crossing phenomenon can be found in [7]. For a recent discussion on this subject

see [8].

A surprisingly similar problem emerges when considering the SU(N) gauge model at

the deconfining point. If the transition is second order, one obvious question concerns the

critical behaviour of the Polyakov lines in arbitrary representations. Over the years, many
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studies have been dedicated to this subject [9 – 14]. The well-verified Svetitsky- Yaffe (SY)

conjecture [15] would place the finite-temperature SU(N) gauge theory in the universality

class of ZN invariant spin model in one dimension less and with short-range interactions.

There is a one-to-one correspondence between the irreducible representations of ZN and the

N−ality values of SU(N). Thus, one is tempted to conclude that the non-abelian nature of

SU(N) and therefore whatever difference among sources in different representations with

the same N−ality should be completely lost at criticality: if only the global ZN symmetry

matters in characterising the universality class, there appears to be no room for independent

exponents for Polyakov loops in different representations with the same N−ality.

The surprising result is that sources in higher representations, according to various

numerical experiments [10, 12, 13], correspond to different magnetisation exponents, one

exponent for each representation. Actually a mean field approximation of the effective

SU(2) Polyakov-line action at criticality in the d → ∞ limit shows that the leading ampli-

tudes of higher representations vanish at strong coupling, and the sub-leading exponents

become dominant, thus each higher representation source carries its own critical expo-

nent [13].

A somewhat similar conclusion has been reached in SU(3) and SU(4) critical theories in

2+ 1 dimensions, starting from a different point of view [7, 17]: the SY conjecture leads to

build up a map between the operator product expansion (OPE) of the Polyakov operators in

the gauge theory and the corresponding spin operators in the two-dimensional conformal

field theory (CFT) describing the associated spin system at criticality. An interesting

property of such a correspondence is that one can define a conserved N−ality also on

the CFT side and that the number of irreducible representations of the conformal algebra

(and therefore the number of critical indices) is larger than N , thus different Polyakov

operators with the same N−ality can behave differently with an exactly prescribed critical

index.

In this paper we build up explicitly the above-mentioned correspondence between the

irreducible representations of SU(3) and the primary fields of the CFT describing the

critical behaviour of the (2+1) SU(3) gauge theory (see section 2). This leads to some

specific predictions on the critical indices to be associated to Polyakov loop operators in

higher representations. In section 3 we compare our predictions with a set of Monte Carlo

simulations at criticality, using finite size scaling methods, finding a nice and complete

agreement.

2. The gauge/CFT correspondence

The effective theory describing the interaction of Polyakov lines of any d + 1 gauge theory

at a finite temperature T can be described, when all the unrelated degrees of freedom are

integrated out, as a d−dimensional spin model with a global symmetry coinciding with the

center of the gauge group. Such an effective theory has only short-range interactions, as

Svetisky and Yaffe (SY) observed long time ago [15]. As a consequence, if the deconfinement

transition of the gauge theory is second-order, it is in the same universality class of the

order-disorder transition of the corresponding spin model.
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Therefore all the universal properties of the deconfining transition can be predicted

to coincide with the ones of the dimensionally reduced effective model. These include the

values of critical indices, the finite-size scaling behaviour, and the correlation functions at

criticality.

becomes particularly predictive because one can apply the methods of CFT.

The main ingredient to fully exploit the predictive power of the SY conjecture is a

mapping relating the physical observables of the gauge theory to the operators of the

reduced model, as first advocated in [16].

The first entry of such a mapping is intrinsically contained in the SY conjecture, namely

the correspondence between the order parameter of the deconfining transition of the gauge

system, i.e. the Polyakov line in the fundamental representation f , and the order parameter

σ of spontaneous symmetry breaking transition of the spin model:

trf (U~x) ∼ σ(~x) , (2.1)

U~x is the gauge group element associated to the closed path winding once around the

periodic imaginary time direction intersecting the spatial plane at the point ~x. The above

equivalence is only valid in a weak sense, that is, when the left-hand-side of the equation

is inserted in a correlation function of the gauge theory and the right-hand side in the

corresponding correlator of the spin model.

One obvious question concerns the CFT operators corresponding Polyakov lines in

higher representations. On the gauge side these are naturally generated by a proper com-

bination of products of trfU , using repeatedly the operator product expansion (OPE)

trf (U~x) tr f (U~y) =
∑

R∈f⊗f

CR(|~x − ~y|) trR(U(~x+~y)/2) + · · · (2.2)

where R indicates any irreducible representation belonging in the decomposition of the

direct product f ⊗ f and the numerical coefficients CR(r) are suitable functions; they

become powers of r at the critical point. The dots represent the contribution of higher

dimensional local operators. For our purposes the relevant property of this kind of OPE is

that the local operators contributing to the right-hand-side are classified according to the

irreducible representations of the gauge group.

On the CFT side we have a similar structure. The order parameter σ belongs to an

irreducible representation [σ] of the Virasoro algebra [18] and the local operators contribut-

ing to an OPE are classified according to the decomposition of the direct product of the

Virasoro representations of the left-hand-side operators. Such a decomposition is known

as fusion algebra [19] and can be written generically as

[λi] ? [λj ] = ck
ij [λk] (2.3)

where the non-negative integers ck
ij are the fusion coefficients.

The consistency of the SY conjecture requires a suitable mapping between the Clebsh-

Gordan decomposition of the direct product of irreducible representations of the gauge

group and the fusion algebra of the corresponding CFT.
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λ σ ψ ε I σ+ ψ+

name spin simple energy identity spin simple

field current field current

xλ
2
15

4
3

4
5 0 2

15
4
3

(r, s) (3, 3) (4, 3) (2, 1) ⊕ (3, 1) (1, 1) ⊕ (4, 1) (3, 3) (4, 3)

3-ality 1 1 0 0 -1 -1

Dλ
1+

√
5

2 1 1+
√

5
2 1 1+

√
5

2 1

Table 1: Operator content of CFT describing the critical three-state Potts model.

σ ψ ε I σ+ ψ+

σ σ+ + ψ+ σ+ σ + ψ σ I + ε ε

ψ σ+ ψ+ σ ψ ε I

ε σ + ψ σ I + ε ε σ+ + ψ+ σ+

I σ ψ ε I σ+ ψ+

σ+
I + ε ε σ+ + ψ+ σ+ σ + ψ σ

ψ+ ε I σ+ ψ+ σ ψ

Table 2: Fusion algebra.

2.1 The SU(3)/3-state Potts-model correspondence

In the present paper we are interested in the 2+1 dimensional SU(3) gauge model which

is described at the deconfinement point by the the same universality class of three-state

Potts model, as it has been checked in numerical simulations [12].

At the critical point such a model is described by a minimal CFT with central charge

c = 4
5 . The local operator content is composed by six primary fields λ associated to six

irreducible representations [λ] that we list in table 1 along with their scaling dimensions

xλ and the Kac labels (r, s) of the corresponding Virasoro representations.1

These are related to the scaling dimensions by

xr,s =
(6r − 5s)2 − 1

60
. (2.4)

The reason why we call ψ a simple current will be clear in the next subsection. The last two

rows of table 1 refer to two important properties of the fusion algebra, which is presented

in table 2.

First, these fusion rules show that the six representations may be cast into three dou-

blets corresponding to the three values (1, 0,−1) of a multiplicatively conserved quantum

1Actually the critical three-state Potts model is invariant under a larger algebra than that of Virasoro,

the so-called W3 algebra, and the representations listed in table 1 are irreducible representations of such

a larger algebra [20]. In fact the identity and the energy are the sum of two different irreducible Virasoro

representations, as table 1 shows. For a recent discussion on the critical three-state Potts model see [21].
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number, exactly like the triality in the SU(3) gauge theory. This provides a non-trivial

check of SY conjecture.

Another useful notion is that of quantum dimension Dλ associated to each representa-

tion λ of CFT and related in a profound way to the modular properties of the theory [19].

For our purposes we simply define the Dλ’s as the set of (real or complex) numbers obeying

the sum rule

Dλ Dµ =
∑

ν∈λ?µ

Dν , (2.5)

which is a property that the quantum dimension shares with the dimension dR = trR1

of a group representation R: this is an integer satisfying the obvious relation dR dS =
∑

T ∈R⊗S dT .

Applying such a definition to the fusion algebra of table 2 one finds at once that the

set of representations split into two parts; three of them have D = 1, while the quantum

dimensions of the other three is a solution of the quadratic equation x2 = x + 1, as listed

in the last row of table 1. The importance of such a notion stems from the fact that the

sum rule (2.5) as well as conservation of triality are sufficient conditions to fix uniquely the

fusion algebra, as one can check at once.

We are now in a position to add other entries in the gauge/CFT mapping. It suffices

to compare the fusion rules of table 2 with the Clebsh-Gordan decomposition of the direct

product of the corresponding SU(3) irreducible representations or multiplets. These are

labelled by a pair of integers (p, q) which give the numbers of covariant and contravariant

indices. The corresponding dimensions d(p,q) and triality k(p,q) are given by

d(p,q) = (p + 1) (q + 1) (p + q + 2)/2 , k(p,q) ≡ (p − q) mod 3 . (2.6)

To adhere to the standard notation we denote the SU(3) multiplets through their dimension

(p, q) ≡ {d(p,q)}.

Comparison of the fusion rule

[σ] ? [σ+] = [I] + [ε] (2.7)

with the analogous one on the gauge side

{3} ⊗ {3̄} = {1} + {8} , or f ⊗ f̄ = 1 + adj (2.8)

yields the new entry

tradj(U~x) ∼ a + ε(~x) , (2.9)

that is expected to be valid for any SU(N) gauge theory undergoing a continuous phase

transition. The constant a can be numerically evaluated [11] using the expected finite-size

behaviour

〈tradj(U)〉 ' a +
b

L2−1/ν
, (2.10)

where L is the spatial size of the system. We used the general relation xε = d−1/ν relating

the scaling dimension of the energy operator to the thermal exponent ν.
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Similarly the fusion rule

[σ] ? [σ] = [σ+] + [ψ+] , (2.11)

corresponds to

{3} ⊗ {3} = {3̄} + {6} , (2.12)

where the anti-fundamental representation {3̄} corresponds to the antisymmetric com-

bination of two quarks while {6} is the symmetric one. Owing to the correspondence

tr
f̄
(U~x) ∼ σ+(~x), the symmetric representation yields the new entry

tr{6}(U~x) ∼ ψ+(~x) + c σ+(~x) . (2.13)

The coefficient c is necessarily different from zero: if it were vanishing, the fusion rule

[ψ+] ? [σ] = [ε] would correspond to {6} ⊗ {3} = {8} + {10} which would in turn imply

either a = 0 in eq. (2.9), which is not the case, or a dubious cancellation between the

contributions of rep.s {8} and {10}. As a consequence, the Polyakov-Polyakov critical

correlator of the symmetric representation {6} is expected to have the following general

form in the thermodynamic limit

〈tr{6}(U~x) tr{6̄}(U~y)〉 =
cs

r2xσ
+

cu

r2xψ
, (2.14)

with r = |~x − ~y| and cs, cu suitable coefficients. Since xσ < xψ, the second term drops off

more rapidly than the first, thus at large distance this correlator behaves like that of the

anti-symmetric representation {3̄} as expected also at zero temperature.

2.2 A difficult question

The SU(3)/CFT correspondence we have just established works in the sense that higher

dimensional representations that can be screened to the fundamental are associated with

operators that are suppressed in large distance correlators, like the {6} decaying in {3̄}

described by eq. (2.14). A similar property emerges also in SU(4) gauge theory [17].

One might ask the following question: how could the two-dimensional CFT ”know”

about the requirement of such a hierarchy of scaling dimensions due to the finite-T relation

to non-abelian gauge theories? In other words, could one predict an ordering of scaling

dimensions in 2D which agrees with the expectations of the corresponding gauge theory?2

Since the core of the gauge/CFT correspondence resides in the mapping between the

Clebsh-Gordan decomposition of the direct product of representations of the gauge group

and the CFT fusion algebra (2.3), the suggestion naturally arises that the ordering of the

scaling dimensions could be a direct consequence of the algebraic structure of the latter.

Even if we failed in finding a complete proof of such a hierarchy of scaling dimensions,

we still believe that this property should be somehow encoded in the fusion rules. Hints

can be found in the relationship between fusion algebra and modular invariance we alluded

in the Introduction, which yields restrictions on the allowed values of the scaling dimen-

sions [19]. For instance, in a CFT with a finite number M of primary fields, like in the

2Actually this is a question posed to one of us by P. Damgaard.
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case at hand, one gets [22]

3

M
∑

i=1

xi = c
M

4
mod Z , (2.15)

where c is the central charge. Further relevant information comes from the simple cur-

rents[23]. These are by definition those primary fields Ψ which have unique fusion rules

with all primaries of the theory, i.e.

Ψ ? λi = λj (2.16)

with a single primary field λj appearing on the right-hand side for any choice of λi. Iterating

the fusion rule of a simple current with itself generates a group ZN , with ΨN = I. As an

example, the primary ψ of table 2 is a simple current with N = 3. The scaling dimensions of

simple currents are strongly restricted. Monodromy properties of the associated correlators

easily yield

xΨ = m
N − 1

N
mod Z , (2.17)

with some integer m modulo N . This condition restricts the scaling dimensions of ψ to

two possible values xψ = 2
3 or xψ = 4

3 (which is the correct value). Inserting this constraint

into eq. (2.15) we get the further restriction xε + 2xσ = 1
5 + n

3 , with n arbitrary integer,

which does not suffice to find the complete solution.

3. Monte Carlo simulations

We performed Monte Carlo simulations on the finite-T (2+1)-dimensional SU(3) gauge

model with standard plaquette action at the deconfinement point, using two critical cou-

plings estimated in [24], namely βc = 8.155(15) for the temporal extension Nt = 2 and

βc = 14.74(5) at Nt = 4 while the spatial size L of the lattice was chosen in the range

8 ≤ L ≤ 64.

We adopted an hybrid updating algorithm consistent of one heat-bath step combined

with Nor over-relaxation steps; in particular we used Nor = 10 in all our simulations.3

It is well known that in the confined phase expectation values of large Wilson loops and

Polyakov loops correlation functions at large distances are difficult to measure, since the

signal-to-noise ratio decreases exponentially. For this reason, efficient variance reductions

methods have been developed [25]. At the deconfining point the situation is much more

favourable because the exponential decay is replaced by a power law; correlation func-

tions at large distances can be measured with good precision without employing special

techniques.

For the different extensions L at Nt = 2 we collected between 10000 and 30000 mea-

surements. For Nt = 4 we collected 10000 measurements for each L. Between two measure-

ments we performed 100-200 updating steps. At the critical point update algorithms suffer

from critical slowing down and one expects large autocorrelation times of the observables;

we analysed our data through jackknife binning by using sufficiently large sizes of the bins

in order to take this into account.

3Notice that we did not perform a systematic study in order to optimise the choice of Nor.
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3.1 Finite-size scaling analysis

Observing the second term of eq. (2.14) is very challenging from a computational point

of view, because it drops off much more rapidly than the fist term, being xψ rather large

(actually xψ = 10xσ). In order to gain a better control of this behaviour one has to resort

to finite size scaling analysis.

The critical two-point function of the spin field σ in a torus L,L′, i.e. in a rectangle with

periodic boundary conditions of periods L and L′ in the x and y directions respectively,

has the finite-size scaling form

〈σ(0, 0)σ+(x, y)〉 = L−2xσf(x/L, y/L′) , (3.1)

where f is a universal function. Unfortunately the general Ansatz for CFT correlation

functions on a torus proposed long ago [26] cannot be applied to the present case, therefore

the form of f for the 3-state Potts model is substantially unknown, apart from the limit

L′ → ∞ (cylindrical geometry), where the principle of conformal invariance at the critical

point allows to write the explicit, exact form of f in any CFT [27].

In our numerical simulations we put instead L = L′. Note that for r =
√

x2 + y2 ¿ L

f becomes a function of the single variable r
L . In the thermodynamic limit L → ∞ scaling

considerations yield

f(x/L, y/L) →

(

L

r

)2xσ

. (3.2)

The SY conjecture predicts that, combining (2.1)and (3.1), the Polyakov-Polyakov

correlator in fundamental representation, defined as

G{3} (x, y) ≡ 〈tr {3}U(0,0) tr {3}U
†
(x,y)〉 (3.3)

should behave as

G{3}(x, y) ' L−2xσf(ξ1, ξ2) , ξ1 = x/L , ξ2 = y/L . (3.4)

It should be stressed that, in writing eq. (3.4), as well as the analogous ones (3.8) and (3.11)

below, as with all lattice identifications of scaling operators, the correlators of either side

are asymptotically equal only when L is large and the points are far apart. At smaller

separations there are additional, less relevant operators on the right-hand side which

will give rise to corrections. These are visible in figure 1 where we plotted the quan-

tity 〈tr {3}U0 tr {3}U
†
r
L

〉( L
Lo

)2xσ versus r/L. The points fall with good accuracy on a single

curve - thus verifying the Ansatz (3.4)- only for r/L > 0.15. The first correction to scaling

of (3.4) is a term proportional to L−2xσ−2:

G{3}(x, y) ' L−2xσf(ξ1, ξ2) + L−2xσ−2f̄(ξ1, ξ2) , (3.5)

where f̄ is another scaling function. Other corrections come from the fact that the lattice

system is not exactly at the critical point, however there is no sign of this kind of corrections

within the accuracy of our data.
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U
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x
σ

L = 20 +
L = 24 ×
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Figure 1: Test of the finite-size scaling form (3.5) on a L × L × 2 lattice. Lo is a reference scale.
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L
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Figure 2: Finite-size scaling analysis of the Polyakov-Polyakov correlators at a distance r = L/2

in a L × L × 2 lattice as a function of the size L. The top line is a fit of 〈tr {3}U(0,0) tr {3}U
†

(0, L

2
)
〉

data to (3.5); it is apparently a straight-line in this log log plot, indicating that the corrections to

scaling are small; the medium curve is a fit of 〈tr {3}U(0,0) tr {6}U(0, L

2
)〉 to (3.8). The bottom line

is not a fit: it is determined by the other two sets of data by putting h = 0 in (3.11). The short

distance data show the non-vanishing contribution of the 〈ψ ψ+〉 correlator.
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i j f(i/4, j/4)/f(1/4, 1/4) g(i/4, j/4)/g(1/4, 1/4) c

1 0 1.8403(41)/f(1/4, 1/4) 1.556(86)/g(1/4, 1/4) 0.4273(15)

1 1 0.9616(44) 0.91(10) 0.4257(15)

2 0 0.9485(44) 0.89(10) 0.4255(17)

2 1 0.9369(45) 0.83(10) 0.4255(17)

2 2 0.9268(44) 0.79(10) 0.4260(18)

Table 3: Estimates of the universal functions f(ξ1, ξ2) and g(ξ1, ξ2) and of the constant c in critical

SU(3) lattice models with temporal size Nt = 2.

i j f(i/4, j/4)/f(1/4, 1/4) g(i/4, j/4)/g(1/4, 1/4) c

1 0 1.5596(70)/f(1/4, 1/4) 2.50(30)/g(1/4, 1/4) 0.3113(30)

1 1 0.9597(85) 0.87(19) 0.3103(25)

2 0 0.9468(81) 0.84(19) 0.3097(24)

2 1 0.9360(77) 0.79(17) 0.3102(23)

2 2 0.9264(78) 0.77(18) 0.3096(25)

Table 4: Estimates of the universal functions f(ξ1, ξ2) and g(ξ1, ξ2) and of the constant c in critical

SU(3) lattice models with temporal size Nt = 4.

As a next step we considered the mixed correlator 〈σ(0, 0)ψ+(x, y)〉. This is zero in the

thermodynamic limit because the fusion rule [σ] ? [ψ+] = [ε] does not contain the identity

[I]. On a torus it can be expressed in terms of another universal function

〈σ(0, 0)ψ+(x, y)〉 = L−xσ−xψg(ξ1, ξ2) . (3.6)

Again the scaling dimensions of the involved operators imply, for large L,

g(x/L, y/L) →

(

L

r

)xσ+xψ−xε

. (3.7)

Therefore the new entry (2.13) of the SY conjecture yields

〈tr {3}U(0,0) tr {6}U(x,y)〉 ' cG{3}(x, y) + L−xσ−xψg(ξ1, ξ2) . (3.8)

The finite-size scaling form of the simple current correlator 〈ψ(0)ψ+(~x)〉 is associated to a

third universal function h(x/L, y/L)

〈ψ(0, 0)ψ+(x, y)〉 = L−2xψh(ξ1, ξ2) , (3.9)

with

h(x/L, y/L) →

(

L

r

)2xψ

(3.10)
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in the large volume limit. Hence, on the gauge side, the Polyakov correlator in the {6}

representation can be written as

〈

tr {6}U(0,0)tr {6}U
†
(x,y)

〉

' c2 G{3}(x, y) + 2c
g(ξ1, ξ2)

Lxσ+xψ
+

h(ξ1, ξ2)

L2xψ
. (3.11)

In order to test these finite-size scaling relations it is worth noting that a rescaling of

both the lattice size and the distance r by a common factor s is compensated, at criticality,

by a rescaling of the correlation function which depends on the scaling dimension of the

involved operators, as eq.s (3.4), (3.8) and (3.11) clearly show.

In practice we proceeded as follows. We chose both x and y of the form jL/4 with

j = 0, 1, 2.4 Varying the linear size L over a set of different values,5 we generated, for

each choice of r/L, a sample of data. Since different lattice sizes imply different numerical

experiments, our data are by construction statistically independent. A typical set of data

is shown in figure 2. In all the cases we do not attempted to use the scaling dimensions as

fitting parameters. The χ2 values of such a kind of fits provide a check on the systematic

errors arising from corrections to scaling. In all the fits the χ2/d.o.f was in the range

between 1 and 2.

Estimates of the universal functions f(ξ1, ξ2) and g(ξ1, ξ2) in the five special points

considered, as well as the constant c are reported in table 3 (Nt = 2) and in table 4

(Nt = 4). We consider the fact that these functions on lattices with different temporal

extensions are substantially the same within the errors, apart from a different multiplicative

normalisation, as a highly non-trivial consistency test of the present description. It is also

remarkable the c evaluated on different points (ξ1, ξ2) has a constant and stable value,

as (3.8) and (3.11) require.

3.2 Multiplets of vanishing triality

In a SU(N) gauge theory at finite temperature one could choose as the exact order param-

eter of the deconfinement transition the Polyakov line in any representation of non-zero

N -ality. At the deconfining point we have

lim
L→∞

〈trRU〉T=Tc = 0 , ∀ kR 6= 0 . (3.12)

One obvious question concerns the critical behaviour of Polyakov lines corresponding to

sources in representations of zero N -ality.

A straightforward consequence our gauge/CFT correspondence is that the finite- size

behaviour (2.9) of the adjoint representation can be enlarged to any multiplet of vanishing

N -ality. In the present SU(3) case we can use our Monte Carlo data at r = 0 to extract the

vacuum expectation value for the 0-triality multiplets of dimensions 8,10 and 27. Indeed,

combining (2.8) with the Clebsh-Gordan decompositions

{3} ⊗ {6} = {8} + {10} ; {6̄} ⊗ {6} = {1} + {8} + {27} , (3.13)

4In this way the minimal non-vanishing distance considered (r = L/4) lies in the scaling region inferred

from figure 1.
5Actually the number of different lattice sizes was 10 for Nt = 2 and 6 for Nt = 4.
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Ro Nt = 2 Nt = 4

aRo
bRo

aRo
bRo

{8} 0.5640(10) 0.985(10) 0.3589(13) 1.218(26)

{10} 0.0804(20) 0.221(25) 0.3144(26) 0.160(52)

{27} 0.0592(21) 0.181(27) 0.0167(24) 0.101(49)

Table 5: Fits to eq. (3.14) for various representations of zero triality.

and using the new entry (2.13), we get

〈trRo
U〉 = aRo

+ bRo
L−xε + · · · Ro = {8} , {10} , {27} , (3.14)

where the ellipses indicate the corrections to scaling.6 In our case they can be neglected,

being the χ2/d.o.f values of the fits to (3.14) always less than 1. The estimates of the

parameters aRo
and bRo

are reported in table 5.

Note that the quantities aRo
represent the thermodynamic limit of the vacuum expec-

tation value of the Polyakov line in the representation Ro. It turns out that representations

of zero N -ality yield aRo
6= 0. Similar results have also been found in 4D gauge theories

near the deconfining point [13, 14].

4. Conclusion

In this paper we presented a consistent extension of the Svetitsky-Yaffe conjecture in (2+1)

dimensional SU(3) gauge theory at finite temperature which led us to associate Polyakov

lines in arbitrary representations of the gauge group to suitable conformal operators of the

corresponding 2D CFT.

In particular, we built up a correspondence between the multiplication table of the irre-

ducible representations of the gauge group and the fusion algebra of the primary operators

of the critical 3-state Potts model.

One important consequence is that the critical exponents of the correlators of these

Polyakov loops are univocally determined. We studied in particular the Polyakov line

in the symmetric, two-index representation {6} and determined the functional finite-size

form of some related correlator. We also discussed the vacuum expectation value of a single

Polyakov line in the first few multiplets of vanishing triality. We tested these predictions

in high precision Monte Carlo simulations finding complete agreement.
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